California PATHWAYS: Long-Term Greenhouse Gas Reduction Scenarios Connecticut Department of Energy and Environmental Protection Exploring Climate Solutions Webinar Series November 20th, 2015 Amber Mahone, Director Climate Analysis Snuller Price, Senior Partner With support from Elaine Hart, Ben Haley, Jim Williams, Sam Borgeson, Nancy Ryan ## **Energy + Environmental Economics (E3)** - + San Francisco-based consultancy with 40 professionals focusing on electricity sector economics, regulation, planning and technical energy analysis - + Broad client base includes utilities, regulators, government agencies, power producers, technology companies, and investors - Our experience has placed us at the nexus of planning, policy and markets ### **Overview: What is PATHWAYS?** - **Back-casting, not forecasting** - **Bottom-up**, user-defined, non-optimized scenarios test "what if" questions - **Economy-wide model captures** interactions between sectors & path-dependencies - + Annual time steps for infrastructure-based accounting simulates realistic stock roll over - **Hourly treatment of electric** sector - **Tracks capital investments and** fuel costs over time **GHG** Day of the Week ## 2012 Science Paper: "The Technology Path to Deep Greenhouse Gas Emissions Cuts by 2050" - + What is the impact of the electric generation mix on the cost and feasibility of a low-carbon future in CA? - + Hydrogen Energy International - + Compared renewables, nuclear, carbon capture and storage - + Demonstrated a feasible pathway to 2050 goal with focus on electrification "The Technology Path to Deep Greenhouse Gas Emissions Cuts by 2050: The Pivotal Role of Electricity," Williams et al, Science (2012) # 2014 SoCal Gas Study: Is electrification the only strategy? - + What is the role of natural gas and low-carbon gas in meeting California's climate goals? - + Southern California Gas Co. ### + Low carbon gas is: - + **Biogas** from manure, landfills but also gasification of woody waste and cellulosic biomass - + Hydrogen produced from renewable electricity via electrolysis - + Synthetic low-carbon methane (power-to-gas) H₂ combined with carbon captured from the atmosphere or ocean to produce methane # 2014: UN Deep Decarbonization Pathways Project - UN Deep Decarbonization Pathways Project - 17 countries, >70% of current global GHG emissions - Scenarios to keep global warming below 2 degrees C - + E3 was lead author of the U.S. country report deepdecarbonization.org # **2015: The California PATHWAYS project** ### + Purpose To evaluate the feasibility and cost of a range of greenhouse gas reduction scenarios in California (prior to development of Governor's 2030 goals) ### Project sponsors - California Air Resources Board, Energy Commission, Public Utilities Commission, Independent System Operator & the Governor's Office - Additional funding provided by the Energy Foundation #### + Team Energy & Environmental Economics with support from LBNL ### California's Greenhouse Gas Reduction Goals ### California Governor Brown's 2030 Climate Agenda - + Reduce greenhouse gas emissions 40% below 1990 level - + **50%** of electricity from renewables sources; - + Reduce today's petroleum use in cars and trucks by up to 50% - **+ 50%** increase in savings in existing buildings **and** make heating fuels cleaner; - + Reduce methane, black carbon and other potent pollutants across industries; - Manage farm and rangelands, forests and wetlands so they can store carbon. ### **Timing for Action is Limited** A car purchased today, is likely to replaced at most 2 times before 2050. A residential building constructed today, is likely to still be standing in 2050. # We modeled several scenarios that reach California's GHG goals - **+ Current policies** (Reference scenario) are expected to achieve 2020 goal but fall short of 2030 goal - Aggressive policies (Early Deployment, Straight Line scenarios) will be needed to achieve 2030 and 2050 goals ### Success requires action in four areas #### 1. Efficiency and Conservation 2. Fuel **Switching** 3. Decarbonize electricity 4. Decarbonize fuels (liquid & gas) **Energy use per capita** (MMBtu/person) **Share of electricity &** H₂ in total final energy (%) **Emissions intensity** **Emissions intensity** (tCO2e/MWh) (tCO2/EJ) # California benchmarks for the four energy transitions ## 1. Efficiency and Conservation ## 2. Fuel Switching 3. Decarbonize electricity ## 4. Decarbonize fuels (liquid & gas) #### By 2030: - 8% reduction in vehicle miles traveled (smart growth) - Continued vehicle fuel economy improvements - Approximate doubling of current building efficiency savings goals #### By 2030: - 6-9 million light duty zero emission vehicles - Trucking & freight strategy, i.e. CNG, hybrid, elec. - 10% 40% electric space heating & 5% - 70% electric water heating, depends on use of biogas #### By 2030: - 50 60% renewable electricity - Renewable integration solutions #### By 2030: - 29 55% reduction in petroleum use in vehicles, relative to 2015 - Biofuels: Nearly all diesel use replaced with netzero emissions biofuels, OR Nearly 50% biogas in the gas distribution pipeline ### Higher energy efficiency in buildings Electric energy efficiency is nearly double in the straight line scenario compared to current policy (Reference), mostly due to LED lighting and more efficient appliances # **Energy Efficiency & Smart Growth in Transportation** ## Light Duty Vehicles – ZEV & PHEV Market Share of New Sales (%) by Year Light duty fuel cell vehicles (FCV), battery electric vehicles (BEV) and plug-in hybrid electric vehicles (PHEV) as % of new vehicle sales in 2025 and 2030 # Renewables are 50-60% of annual generation by 2030 + Average grid scale renewable additions are ~2,400 MW/year (mostly solar, wind) plus total 11,800 MW rooftop PV by 2030 ## 2030 Renewable Generation by Type (%) - Straight Line #### 2015 & 2030 Annual Generation 400 350 300 26%* 48% 56% 250 200 150 100 50 0 2015 2030-SL 2030-ED ■ Renewable ■ Hydro CA CCGT/CT Nuclear ■ Imports ■ CHP * Estimated, not actual value ## Different options for use of biofuels, but sustainable supplies are limited - **Sustainable biomass supply is limited**, insufficient supply to displace both natural gas & diesel consumption (assuming CA's share of U.S. resource) - If biofuel supply is limited, greater electrification and/or carbon neutral fuels produced using low-carbon electricity is needed #### **Final Energy Demand by Major Fuel Type** ## Two Forks in the Road ### **Average Household Monthly Costs** #### 2030 Household Costs - Straight Line ### Net Total: \$8/mo/household 0.8% increase over Reference Scenario energy-related costs (\$14/mo/household if assume all com. & industrial energy system costs flow through to households) Average Incremental Cost (2012\$/mo/household) Sensitivities in 2050 show relative importance of carbon reduction strategies in long-term ## Top policy objectives for California - + Electricity decarbonization electricity policy must drive CA to near complete decarbonization by 2050 - + Renewable Fuel Standards policy must encourage development of fuels produced from electricity and should redirect biomass towards high value uses - **Transportation** the majority of new light duty auto sales should be electric, fuel cell, or plug-in hybrid vehicles by 2030 - + Energy efficiency and electrification building energy efficiency programs must unlock deeper savings and must pivot to focus on carbon rather than primary energy use - Be proactive on distributional cost impacts – key to sustaining a long term policy effort ## Thank You! #### **Contact:** Amber Mahone, amber@ethree.com Snuller Price, snuller@ethree.com (415) 391-5100 #### For more information: https://ethree.com/public_projects/energy_principals_study.php ## APPENDIX ## **Basic Energy Modeling Framework** ### **Demand Sectors** ## Overview of Electricity Dispatch Module in PATHWAYS ### **Electricity Balancing - 2015** In near-term, renewables balanced largely by natural gas and hydro Energy+Environmental Economics 2 # Electricity Balancing 2030 in Straight line Scenario + Additional renewables built for and absorbed by flexible grid electrolysis to fuel FCVs Energy+Environmental Economics 28 # Electricity Balancing 2030 in High BEV Scenario + Lower loads, some balancing provided by workplace charging, additional balancing required from storage Energy+Environmental Economics 29 ## Thank You! Energy and Environmental Economics, Inc. (E3) 101 Montgomery Street, Suite 1600 San Francisco, CA 94104 Tel 415-391-5100 www.ethree.com